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What are neural networks?
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…what do these terms mean anyway?

How does this relate to “machine learning,”  “artificial 
intelligence,” and “deep learning”?



Field Taxonomy (as of now...)
• Artificial Intelligence (AI)

• Concerned with enabling machines to exhibit aspects of human intelligence: 
knowledge, learning, planning, reasoning, perception

• Narrow AI: focused on a task or similar set of tasks
• General AI: human-equivalent or greater performance on any task

• Machine Learning (ML)
• Enabling machines to complete tasks without being explicitly programmed
• Common tasks: Regression, Classification, Clustering, Dimensionality 

Reduction

• Neural Networks (NNs)
• An approach within ML that uses many connected processing units
• Many different architectures and training techniques 

• Deep Learning (DL)
• Learning hierarchical representations 
• Right now, largely synonymous with deep (many-layered) NN approaches

Artificial Intelligence

Machine Learning

Neural Networks

Note that these definitions are not rigid: there is a lot of fluidity in the field

Deep Learning

Mathematical Optimization

e.g. Evolutionary Algorithms,
Swarm Intelligence

e.g. Gaussian Process Optimization

e.g. Simplex, Gradient Descent



How do neural networks “learn”?



Supervised Learning

learn known input/output pairs

Basic Learning Paradigms

Reinforcement Learning

Unsupervised Learning

interact with the environment à adjust behavior based on reaction

no labeled data à infer structure 
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Gradient-based methods
Evolutionary algorithms

Swarm intelligence

Machine 
Learning

Mathematical 
Optimization

Regression
Classification
Clustering

Dimensionality reduction

Hybrid optimization methods
Hyperparameter tuning

Neural 
Network

Learning 
Paradigms*

Supervised learning 
Unsupervised learning
Reinforcement learning

Transfer learning

weight and/or topology 
adjustment

training framework

training framework

How this all fits together for NNs

(particular ML tool)
*arguably broader than just “machine learning”



okay, but for many years we have tried using neural 
networks and have had very little success…



… so, what is different now?
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New network architectures and 
training paradigms, 
such as long short term memory 
(LSTM) networks, neural turing
machines, and generative adversarial 
networks (GANs)

Better theoretical 
understanding of 
NNs and improved 
optimization 
methods

Applications have driven a lot of 
advancement (both algorithmic 
and practical/heuristic)

Can easily share large data sets, 
code, and computing setups 
(e.g. via cloud computing services)

Increased computational capability 
enables more complicated NN architectures 
and faster training + larger data sets

Up-and-coming 
advancements: 
neuromorphic 
hardware

IBM, ANL

GPUs

Accessibility of HPC 
clusters
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Let’s talk about accelerators…

http://fast.fnal.gov/gallery.html



Interesting Technical Challenges
• Complex/nonlinear dynamics
• Many small, compounding errors 
• Many parameters to monitor and control
• Interacting sub-systems
• On-demand changes in operational state
• Diagnostics sometimes limited or not put to 

full use in control (e.g. images)
• Time-varying/ non-stationary behavior

Uncertain, time-varying, nonlinear, many-parameter systems with continuous action spaces:  
à of great interest for research in control and machine learning
à lots of opportunity to both gain from and contribute to this area

Strong Incentives for Better Control
• Cost of running àTime/energy efficiency of control

• Cost of unintended down-time à Personnel cost, user time, bulk scientific output

• Achieving performance needed for science goals and other applications
• improving accelerator components and control both play a role

JLab

LBNL Visualization Group Fermilab
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Example from LCLS



We rely heavily on operators for day-to-day control tasks . . .

. . . so what can we learn from them, 
and what analogous techniques can we use?

Fermilab Control Room Photo: 
Reidar Hahn, FNAL



Inspiration from Operators

Model 
Learning Planning

Diagnostic 
Analysis

Optimization

Prediction

Learning 
Control

Fermilab Control Room Photo: Reidar Hahn, FNAL



Application Areas for Accelerators

• Online modeling à NN model 

• Time delays à model predictive control + NN models

• Image-based diagnostics à convolutional or locally-connected NNs

• Frequent switching between operating conditions à NN policy

• Virtual diagnostics à NN model trained from intercepting diagnostics or simulation

• Encode an existing policy and/or adapt upon it à NN policy 

• High-level assessment of machine or device states à NN process model, classifier

• Failure prediction / Anomaly detection à NN process model, classifier



Online Modeling

• Operators maintain a learned mental 
machine model:  let’s supplement it

•

• Ideally:
• Fast-executing, but accurate enough to be useful
• Use measured inputs directly from machine
• Combine a priori knowledge + learned parameters

• Applications
• A tool for operators + virtual diagnostics
• Predictive control 
• Help flag aberrant behavior

Another approach: machine learning model
• Once trained, neural networks can execute quickly
• Train on slow, high-fidelity simulation results
• Also train on measured results

I. V. Pogorelov, et al., IPAC15, MOPMA035

X. Pang, PAC13, MOPMA13

A. L. Edelen, et al. NAPAC16, TUPOA51

This can be very hard!

Yields a fast-executing model that can be used 
operationally, but approximates behavior from 
high-fidelity simulations (e.g. PIC codes, LPA)

(fractions of a second)

An initial study involving this at FAST:

One approach: faster modeling codes
• Simpler models (tradeoff with accuracy)

• Parallelization and GPU-acceleration of existing codes
PARMILA
elegant

• Improvements in underlying modeling algorithms

one PARMELA run: ~20 min



Model Predictive Control (Prediction + Planning)
Basic concept: 

1. Use a predictive model to assess the outcome of 
possible future actions

2. Choose the best series of actions

3. Execute the first action

4. Gather next time step of data

5. Repeat
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Existing Feedforward/PID Controller Model Predictive Controller

Temperature Control for the RF Photoinjector at FAST

Resonant frequency controlled via temperature 

PID control is undesirable in this case:
• Long transport delays and thermal responses
• Recirculation leads to secondary impact of disturbances
• Two controllable variables: heater power + valve aperture

Applied model predictive control (MPC) with a neural network model 
trained on measured data:  ~ 5x faster settling time + no large overshoot

More info: A. L. Edelen. IEEE TNS, vol. 63, no. 2, 2016Note that the oscillations are largely due to the transport delays and water recirculation, rather than PID gains

Gun Water System Layout

Work with B. Chase, D. Edstrom, E. Harms, FNAL
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LLRF system will compensate for detuning by increasing forward power

But…
• Ability to do this bounded by the amplifier specs

• RF overhead adds to initial machine cost and footprint

• Using additional RF power à increasing operational cost

• Increased waste heat into cooling system à increasing operational cost

• If detuned beyond overhead à interrupt normal operations (beam not 
properly accelerated or LLRF in frequency-tracking mode)

Why does this matter (for resonant frequency control in general)?



PIP-II Injector Test RFQ
Specification for GDR: 3-kHz maximum frequency shift
Range of RF duty factors and pulse patterns (including up to CW)
-16.7 kHz/ºC in the vanes and 13.9 kHz/ºC in the walls*

* A. R. Lambert et al., IPAC’15, WEPTY045

ANSYS simulation data 
courtesy A. Lambert, 
LBNL

Variable heating

Work with D. Bowring, B. Chase, J. Edelen, D. Finstrom, D. Nicklaus, J. Steimel, FNAL



RFQ Detuning in CW Mode

Example of uncontrolled detuning in CW mode under 
a small change in cavity field (55 kV to 58 kV)

PI frequency control in CW operation under a 
small change in cavity field (55 kV to 58 kV)



What about a simple first-principles model, or a learned linear model?

J. Edelen, A. Edelen, et al. TNS 64, vol. 2, (2017)

measured input data à first-principles model 4 ms pulse duration, 10 Hz rep rate            variety of valve and power settings

4.01 kHz max error

not good enough!

1.67 kHz RMS error



Neural Network Model
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Vane and wall valve settings
Average RF power

Water temperatures
Ambient temperature and humidity

Mean Absolute Prediction Error

346 Hz on the test set
98 Hz on the validation set

115 Hz across all sets



Built a python-based control framework
• Executes on controls network linux computer
• PI control in regular operational use
• Preparing for test of MPC 
• Designed to be portable + modular



Predict what diagnostics might look like when they are unavailable or don’t exist

Online 
Model

Real 
values 
from 
machine

Real-time prediction of beam dynamics at various locations

Virtual Diagnostics
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Predict what diagnostics might look like when they are unavailable or don’t exist

Online 
Model

Real-time prediction of beam dynamics at various locations

Virtual Diagnostics

(fast a priori simulation, or fast ML model trained using simulation data)
Real 
values 
from 
machine

e.g. GPU-accelerated 
PARMILA at LANSCE

X. Pang, et al., PAC13, MOPMA13

L. Rybarcyk, et al., IPAC15, MOPWI033
L. Rybarcyk, HB2016, WEPM4Y01

X. Pang, IPAC15, WEXC2
X. Pang and L. Rybarcyk, CPC185, is. 3 (2014)
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Online 
Model

Real-time prediction of beam dynamics at various locations

Online 
Model

Diagnostic
Measurements

Virtual Diagnostics

(fast a priori simulation, or fast ML model trained using simulation data)
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Online 
Model

Real-time prediction of beam dynamics at various locations

Online 
Model

Diagnostic
Measurements

Diagnostic 
Prediction

training
updates

Virtual Diagnostics

Real 
values 
from 
machine

Real 
values 
from 
machine

(fast a priori simulation, or fast ML model trained using simulation data)

Predict what diagnostics might look like when they are unavailable or don’t exist



Virtual Diagnostics

Online 
Model

Real-time prediction of beam dynamics at various locations

Online 
Model

Diagnostic
Measurements

Diagnostic 
Prediction

• moved to another part of machine
• can’t operate in place (e.g. intercepting diagnostics)
• blocked for update time

(ML model)

(fast a priori simulation, or fast ML model trained using simulation data)
Real 
values 
from 
machine

Real 
values 
from 
machine

Predict what diagnostics might look like when they are unavailable or don’t exist



Virtual Diagnostics A. Sanchez-Gonzalez, et al.  https://arxiv.org/pdf/1610.03378.pdf

• Used archived data to learn correlation between fast and slow 
diagnostics

• Looked at a variety of ML methods and different diagnostics



Fault Prediction (Prognostics) + Anomaly Detection 

Operations: 
• Identify aberrant behavior that is correlated with 

faults, failures, or poor machine states

• Detect deviations from normal operating 
conditions that may otherwise go noticed

Machine Protection: 
catastrophic failures and faults sometimes 
preceded by tell-tale signs

Replacement Cycles: 
predict time-to-failure based on real-time and 
archived data



“Some of the most dangerous malfunctions of 
the magnets are quenches which occur when a 
part of the superconducting cable becomes 
normally-conducting.”

Aim: use a recurrent NN to identify quench 
precursors in voltage time series.

à Predict future behavior,  then classify it

Initial study with small data set: 
• 425 quenches for 600 A magnets
• Used archived data from 2008 to 2016 
• 16-32 previous values à predict a few time steps 

ahead



Neural Network Policies and Reinforcement Learning

Can train on models first to get a
good initial solution before deployment

Actor-only Methods

• Actor is a control policy 
• Maps states to actions
• Reward provides training signal

• Critic maps states or state/action pairs to 
an estimate of long-term reward

• Could be a NN, tabular, etc. 
• Critic provides training signal to actor

Without actor: use an optimization algorithm 
with the critic

Teacher

Can use supervised learning to first approximate the 
behavior of a different control policy

Actor-Critic Methods



• Image diagnostics à would be nice to use directly, and some yield relatively complicated information

e.g. XTCAV at SLAC

• Convolutional Neural Networks (CNNs) à very good at image processing

• Reinforcement Learning (RL) à can learn control policies from data

Why not try using image based diagnostics directly in learned control policies?
What’s a relatively simple test case to start with?

D. Ratner, et al., PRSTAB18, 030704 (2015)
C. Behrens, et al., Nat. Commun. 5, 3762 (2014)

A. Marinelli, et al., Nat. Commun. 6,  6369 (2015)

Computer  Vision + Neural Network-based RL



Initial Study at FAST/IOTA

Photocathode RF Gun Superconducting Capture Cavities

figure from various FAST reports

Initial work with J. Edelen and D. Edstrom, FNAL



Initial Study: Choose Gun Parameters Based on Laser Spot

Motivation:
◦ Gun phase and solenoid strength tuned daily
◦ Asymmetries in initial laser distribution result in 

emittance asymmetries downstream
◦ Would be nice to obtain optimal gun phase and 

solenoid strength for a given initial laser 
distribution automatically (and perhaps prioritize 
x or y emittance to minimize)

Example virtual cathode image 
(10 Aug. 2016)

Other perks: 
◦ PARMELA simulation based on survey data already in existence (J. Edelen)
◦ Try out creating a fast NN modeling tool from slower-executing simulations
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distribution automatically (and perhaps prioritize 
x or y emittance to minimize)

Example virtual cathode image 
(Aug. 10 2016)

Other perks: 
◦ PARMELA simulation based on survey data already in existence (J. Edelen)
◦ Try out creating a fast NN modeling tool from slower-executing simulations



Initial Study: Steps

• Gather simulation data from PARMELA scans
• Create a NN model 

• Be certain that the necessary information can be extracted from 
the image, gun phase, and solenoid strength

• Train a RL controller using that model 
• Extension beyond simulation (tentative):

• Incorporate measured data into model and update controller
• Carefully test on machine

(αx		,	αy)

(εnx ,	εny)

(βx	,	βy)

(Np)

(E)

Model Learning 

Policy Learning 

model inputs and outputs



CNN Model: Simulation Data
• PARMELA simulations from the gun up to the exit of CC2

• 2-D space charge routine 
• Scanned gun phase, solenoid strength, initial beam distribution 

• Two sets of data:
• Fine scans (steps of 5° phase, 5% sol. str.) for sims just past the gun

• Coarse scans (steps of 10° phase, 10% sol. str.) for sims up through 
CC2

• Simulated “virtual cathode images”
• Going from VCI à initial beam distribution ok from prior work
• Initial beam distribution à simulated VCI probably ok
• Obviously very “well-behaved” examples

For normalized sol strength, 1 is the setting that produces a peak axial field of 1.8 kG

Simulation predictions after CC2. Dashed lines are x-
emittance, solid lines are y-emittance. 

Caveat: doesn’t take into account coupling…later changed 
NN setup to predict sigma matrix,  and also used a 3D 

space charge routine.



CNN Model: Two Representative Plots

Top-hat initial beam, 0° RF phase, after gun Asymmetric Gaussian initial beam, 0° RF phase, after CC2

Dashed lines are NN predictions and solid lines are simulation results

For the gun data, all MAEs are between 0.4% and 1.8% of the parameter ranges.
For the CC2 data, all MAEs are between 0.9% and 3.1% of the parameter ranges.

à Not bad for such a small training set



Fast Switching Between Trajectories

JLab

• 76 BPMs, 57 dipoles, 53 quadrupoles 
• Traditional approach has never worked (linear response matrix)
• Rely on one expert for steering tune-up
• Want to specify small offsets in trajectory at some locations
• Didn’t initially have an up-to-date machine model available

Learn responses (NN model) from tune-up data and 
dedicated study time: 
dipole + quadrupole settings à predict BPMs 

Train controller (NN policy) offline using NN model: 
desired trajectory à dipole settings
(and penalize losses + large magnet settings)

Test on machine: check to make sure model prediction 
still accurate and try static controller (non-adaptive)

Work with C. Tennant and D. Douglas, JLab
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Train controller (NN policy) offline using NN model: 
desired trajectory à dipole settings
(and penalize losses + large magnet settings)

Test on machine: check to make sure model prediction 
still accurate and try static controller (non-adaptive)

• 76 BPMs, 57 dipoles, 53 quadrupoles 
• Traditional approach has never worked (linear response matrix)
• Rely on one expert for steering tune-up
• Want to specify small offsets in trajectory at some locations
• Didn’t initially have an up-to-date machine model available

Fast Switching Between Trajectories

Modeling Example 
(randomly selected a BPM 
out of the data set to plot)

Controller: random initial states à on average 
within 0.2 mm of center immediately

Model Errors for BPMs:
Training Set: 0.07 mm MAE    0.09 mm STD
Validation Set:     0.08 mm MAE 0.07 mm STD
Test Set: 0.08 mm MAE  0.03 mm STD

Similar Kind of Task: switching between FEL frequencies (in progress)
à simulation study with CSU FEL (3 – 6 MeV e- beam à space charge)
àuse optimization iteration output from simulation to train NN model
à train controller via interaction with NN model, then with simulation
à given target wavelength: set quads, gun phase, solenoid strength, RF power



Final Notes: Some Practical Challenges

Training on Measured Data

Training on Simulation Data

Observed parameter range in archived data

Undocumented manual changes 
(e.g. rotating a BPM)

Relevant-but-unlogged parameters

Availability of diagnostics

Input/output parameters need to 
translate directly to what’s on the 
machine (quantitatively)

High-fidelity (e.g. PIC) 
à time-consuming to run

Retention + availability 
of prior results:  

(optimize and throw the 
iterations away!)

How representative of the real 
machine behavior?

Deployment

Initial training is on HPC systems à deployment is typically not*
- Execution on front-end: necessary speed + memory?
- Subsequent training: on front-end or transfer to HPC?Time on machine for characterization studies

(schedule + expense)

Ideal case: 
- comprehensive, high-resolution data archive
- excellent log of manual changes I/O for large amounts of data

Software compatibility for older systems:
interface with machine + make use of modern ML software libraries

* for now…

Need a sufficient* amount of reliable* data
(but not as much as is sometimes claimed in DL)

*large enough parameter range and set of examples to 
generalize well and complete the task

*you can trust it



Final Notes:  Funding Climate



Final Notes

Fermilab has a strong presence in machine 
learning (especially for neural networks/HEP)

Lots of potential for fruitful collaborations 
on the accelerator side
à LBNL, SLAC, LANL, CERN all interested in 
applying ML to accelerator modeling/controls

• Neural networks are very flexible tools à far more powerful in recent years
• Mostly preliminary results so far, but making progress (+ more infrastructure in place)
• Lots of opportunities to use neural networks (and ML more broadly) to improve  

accelerator performance on both existing and future machines

Some possible experiments at Fermilab:
• Ion sources (MPC/RL)
• Cryogenic system control (MPC/RL)
• Fermi Test Beam Facility (fast switching)
• Muon Campus (virtual diagnostics, online modeling)
• Phase space manipulations at FAST (fast switching)

Thanks for your attention!





Final Notes: Fermilab has a strong presence in machine learning 
(especially for DL/HEP)

• See Fernanda Psihas New Perspectives 2017 talk
• Ramping up HPC resources
• Slack channel: https://hepmachinelearning.slack.com
• Journal Club meetings
• Monthly Intro meetings
• Website: http://machinelearning.fnal.gov/

CNN Applications for HEP
June 9th
10:30 AM, One West



CNN Model: Simulation Data
• PARMELA simulations from the gun up to the exit of CC2

• 2-D space charge routine 
• Scanned gun phase, solenoid strength, initial beam distribution 

• Two sets of data:
• Fine scans (steps of 5° phase, 5% sol. str.) for sims just past the gun

• Coarse scans (steps of 10° phase, 10% sol. str.) for sims up through 
CC2

• Simulated “virtual cathode images”
• Going from VCI à initial beam distribution ok from prior work
• Initial beam distribution à simulated VCI probably ok
• Obviously very “well-behaved” examples

For normalized sol strength, 1 is the setting that produces a peak axial field of 1.8 kG

Parameter Ranges used for Model Training

Simulation predictions 
after CC2. Dashed lines 
are x-emittance, solid 
lines are y-emittance. 

Caveat: doesn’t take into 
account coupling…later 
changed NN setup to 
predict sigma matrix,  
and also used a 3D 

space charge routine.



CNN Model: Performance

Performance for the predictions after the gun Performance for the predictions after CC2

For the gun data, all MAEs are between 0.4% and 1.8% of the parameter ranges.
For the CC2 data, all MAEs are between 0.9% and 3.1% of the parameter ranges.

à Not bad for such a small training set



Present Status and Next Steps
• Improving the quality of the setup:

• Predicting the full sigma matrix
• More realistic initial distributions
• Using 3D space charge routine
• Using locally-connected layers
• Switching to ASTRA

( greater execution speed à more training data)

• Next steps (in tandem):
• Finish simulation study with present setup
• Extend to phase space manipulation simulation study
• Solidify plans for incorporating measured data and testing controller

• Need to align available inputs/controllable variables (e.g. sigma matrix vs. info from emittance monitors, rotation of quads, etc.)

• Also depends on run schedule, status of new emittance monitors, solid time with consistent setup, etc. 

• Expanding scope to phase space manipulations:
• Specify a target sigma matrix
• Include quads after CC2, capture cavity phases, etc.
• Collaborating with NIU: 

• RTFB transform is a possible application
• Alex Halavanau running simulation scans with NIU’s 

newer model à more training data

Also, if you have some other possible application and have or can easily obtain training data: don’t hesitate to get in touch! 
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MPC Benchmark Controller: Actions
Requested by Controller Actual Read-backs

Could 
optimize for 
lower heater 

power



Backpropagation
						𝑎R = 𝑓 ∑ 𝑤RH𝑥H + 𝑏R�

H  → 	𝑓 𝑤𝑥 + 𝑏

Layer-by layer: 𝑎U = 𝑓	 𝑤U𝑎UV% +	𝑏U = 𝑓(𝑧U)

Vectorized notation:

𝑎R

𝑤RH

𝑗th node activation

𝑗th node in layer 𝑙, 𝑘th node in 𝑙 − 1

𝑏R 𝑗th node bias

For each training instance:

1. Forward Pass: 
For 𝑙 = 1, 2, 3 . . . 𝑁U

2.  ‘Error’:

3. Backward Pass:   
For 𝑙 = 𝑁U − 1, 𝑁U − 2, . . . 1

𝛿U = 𝑤U6%𝛿U6% ⨀𝑓′(𝑧U)�
�

4. Final Derivatives: 
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𝑓 applied element-wise 𝑧U = 𝑤U𝑎UV% + 𝑏
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Cathode QE drop caused hours of downtime. 
Breakout detection (Twitter algorithm) would have found change immediately!

D. Sanzone

Example from D. Ratner presentation at 2017 DS@HEP:



PXIE RFQ

4"inner"channels"

8"outer"channels"

Vane channels

Wall channels

All images courtesy LBNL, D. Li, A. Lambert

3-kHz max. freq. shift

0.1-°C water stabilization



FAST Photoinjector

Photo: E. H
arm

s

RF electron gun at the
Fermilab Accelerator Science and 
Technology (FAST) facility 

— Long, variable time delays
— Tight tolerances
— Recursive behavior
— Two controllable parameters

Photo: P. Stabile

!!Type Photoinjector
!!Number!of!cells 1½
!!RF!Mode TM010,π 
!!Loaded!Q ~11,700
!!RF!Frequency 1.3 GHz 
!!Frequency!Shift 23 kHz/°C

!!Macropulse!Duration 1 ms
!!Repetition!Rate 1−5 Hz
!!Bunch!Frequency! 3 MHz
!!Design!Gradient 40−45 MV/m
!!Power!Source 5 MW Klystron

FAST!RF!Gun!Parameters
!!Gun!Parameters

!!Nominal!Operating!Parameters



PIP-II RFQ

High-intensity RFQ for the PIP-II 
Injector Experiment (PXIE)

— Time delays
— Large, dynamic frequency response
— Tight tolerances
— Coupling
— Recursive behavior
— Three controllable parameters

!!RF!frequency 162.5 MHz
!!Q-factor ~13,900
!!Loaded!Q ~7,000
!!Physical!Length 4.45 m (2.4 wavelengths)
!!Vane-to-Vane!Voltage 60 kV
!!Estimated!Power!Dissipation < 100 kW
!!RF!Repetition!Rate pulsed − CW

!!Current 0.5 − 10 mA (nominal 5 mA)
!!Input!Energy 30 keV
!!Output!Energy 2.1 MeV

!!Beam!Parameters

PXIE!RFQ!Parameters
!!RFQ!Design!Parameters

Constructed by LBNL

Photo: J. Steimel

Right now: 100s to 5ms pulse at 10 Hz 
~100 kW forward RF power




